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1.	 Introduction

Numerical solutions of Partial Differential Equations with Finite Element Method have mul-
tiple applications in science and engineering. Several challenging problems require special sta-
bilization methods to deliver accurate results of the numerical simulations. The advection-domi-
nated diffusion problem is an example of such problems. Unstable numerical methods generate 
unphysical oscillations, and they make no physical sense. Obtaining accurate and stable numerical 
simulations is difficult, and the method of stabilization depends on the parameters of the partial dif-
ferential equations. They require a deep knowledge of an expert in the field of numerical analysis. 
We propose a method to construct and train an artificial expert in stabilizing numerical simulations 
based on partial differential equations. We create a neural network-driven artificial intelligence 
that makes decisions about the method of stabilizing computer simulations. It will automatically 
stabilize difficult numerical simulations in a linear computational cost by generating the optimal 
test functions. These test functions can be utilized for building an unconditionally stable system 
of linear equations. The optimal test functions proposed by artificial intelligence will not depend 
on the right-hand side, and thus they may be utilized in a large class of PDE-based simulations 
with different forcing and boundary conditions. We test our method on the model one-dimensional 
advection-dominated diffusion problem. But the methodology presented here can also be applied 
in two and three dimensions. It can be extended to challenging computational problems, including 
Navier-Stokes simulations with high Reynolds number or high contrast Maxwell equations. The 
artificial neural network’s optimal test functions can be used to generate a sparse system of linear 
equations. This system of equations will have a structure allowing for a fast, accurate, and stable 
solution of the considered PDE.

2.	 Automatic stabilization with neural networks

Recently, there is a significant interest in research of possible application of Deep Neural 
Networks into finite element method simulations [13,14]. Paper [14] is an introduction to Deep 
Neural Network for computational scientists working already with the simulations. In [15] the 
authors consider the problem of representing some classes of real-valued univariate functions used 
in approximation with deep neural networks (deep NN, DNN) based on rectified linear unit (ReLU) 
activation functions. They show how the so-called ReLU NN calculus rules can be applied to obtain 
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the representation of piecewise linear continuous functions. In particular, DNN approximation rates 
match those achieved by free-knot (h-adaptive) and order-adaptive (hp-adaptive) approximations. 
In [13] the authors show that it is possible to guide goal-oriented adaptivity for stationary problems 
using DNN. The finite element method utilizes high-order basis functions, e.g., Lagrange polyno-
mials in the classical finite element method (FEM) [4] or B-spline basis functions in isogeometric 
analysis (IGA) [1]. There are several challenging problems solved by FEM and IGA, such as analy-
sis of the construction of civil engineering structures, cars or airplanes [6], geophysical applications 
like identification of oil and gas bearing formations [12], bioengineering simulations like modeling 
of cancer growth [7], blood flow simulations [11], wind turbine aerodynamics [3] or modeling of 
propagation of acoustic and electromagnetic waves over the human head [2]. They require special 
stabilization methods to deliver high accuracy numerical solution.

We plan to train the neural network to find the optimal test functions stabilizing the time-de-
pendent IGA FEM simulations. We also propose a method to solve a Petrov-Galerkin formulation 
with the optimal test functions in a linear computational cost on tensor product grids. The simula-
tions of difficult, unstable time-dependent problems, like advection-dominated diffusion [8], high-
-Reynolds number Navier-Stokes equations [9], or high-contrast material Maxwell equations, have 
several important applications in science and engineering.

There are several stabilization methods, such as Streamline-Petrov Upwind Galerkin method 
(SUPG) [5], discontinuous Galerkin method (DG) [10], as well as residual minimization (RM) 
method [8,9]. We will use the Petrov-Galerkin formulation with the optimal test functions. It can be 
derived directly from the RM method. The RM for a given trial space it uses the larger test space, 
while for the Petrov-Galerkin formulation, we can compute the optimal test functions living in the 
subspace of the test space. The number of the optimal test functions is equal to the dimension of the 
trial space. The Petrov-Galerkin formulation, used for stabilization, enables interfacing with DNN. 
The DNN can be trained by running several simulations and using the computations of the optimal 
test functions. The test functions will be parameterized using the B-spline basis. The input to the 
DNN will be the problem parameters and the trial space. The output from the DNN will be the opti-
mal test functions coefficients. Later, by running the simulations in every time step, using the actual 
configuration of parameters from the current time step, we can ask the DNN to provide the optimal 
test functions that will stabilize the computations for a given trial space. Such an efficient, ultra-fast, 
and automatic way of stabilization of time-dependent simulations is not available nowadays, and it 
may have a big impact on the computational science community.

3.	 Applications

We develop a method for ultra-fast solvers using Petrov-Galerkin formulations with optimal 
test functions for time-dependent problems. These solvers for a given approximation space require 
determining the optimal test functions that will stabilize the simulations. The solver itself, if pro-
perly designed using the alternating-directions algorithms, can deliver a linear computational cost, 
but the problem of finding the optimal test spaces is computationally hard. We also claim that for 
transient simulations, where the model parameters change from one time step to another, the test 
spaces that stabilize the simulations may change from one time step to another.

Thus, we construct and train DNN to find optimal test functions to stabilize Petrov-Galerkin 
formulations with classical and isogeometric finite element method simulations of time-dependent 
problems, perform on regular patches of elements. The DNN will approximate the coefficients 
of linear combinations of B-spline basis functions used to test the Petrov-Galerkin formulation 
employed within the classical and isogeometric finite element method. Trained on the simulations’ 
parameters, different deep neural networks for different classes of problems, they will deliver in 
a linear computational cost, the parameters of the optimal test functions that can be used for stabi-
lization of the simulations.
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The simulations of difficult, unstable time-dependent problems, like advection-dominated dif-
fusion-reaction, high-Reynolds number Navier-Stokes equations, or high-contrast material Max
well equations, have several important applications in science and engineering.
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Figure 1. Stabilization of advection-diffusion simulations.

Figure 2. Stabilization of Navier-Stokes simulations.
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