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1. Introduction

The hierarchical matrices have been introduced by Hackbusch [1]. Usually, in scientific com-
puting, the rank of the entire matrix is equal to the size of the matrix. This is because the low-
-rank matrices are not invertible [2]. However, if we partition the matrix recursively into blocks, 
we discover that the off-diagonal blocks are low-rank. The idea of the hierarchical matrices is to 
decompose the matrix recursively into off-diagonal low-rank blocks. The matrices resulting from 
finite element method computations decompose by recursive partitioning into the diagonal, with the 
low-rank off-diagonal blocks. The rows and columns in the matrices are related to basis functions 
spread over the computational mesh nodes. The non-zero entries in the matrices result from the 
overlapping of basis functions from different nodes of the mesh. The further the nodes, the less the 
overlap, and the lower is the rank of the off-diagonal block of the matrix.

The benefit of having a matrix compressed into recursive low-rank blocks is that the multi-
plication of this matrix by a vector can be performed in a linear O(N) computational cost. This is 
illustrated in Figure 1. Panel (a) presents a single block of a matrix of size n-rows and m-columns. 
In the compressed format, this block is represented by a matrix of n rows and r columns, multi-
plied by another matrix of r rows and m columns. The low-rank blocks are kept in this compressed 
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Figure 1. Panel (a) Multiplication of an (n,m)-size block of a matrix compressed  
with rank r by s vectors of size m. Panel (b) Multiplication of a matrix partitioned  

into four (n,m)-size blocks compressed with rank r by s vectors of size 2m.
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format without multiplication back into the full block. A block can be decomposed into two blocks 
if it has a low-rank r. Such the block, when multiplied by s vectors of m-rows, requires O(N) 
floating-point operations. The first multiplication of a green block of size r-rows and m-columns 
by a pink vector of m-rows and s-columns is performed using O(rms) operations. The resulting 
orange block of r-rows and s-columns is multiplied by a blue block of n-rows and r-columns, using 
O(srn) operations. The total number of operations is O(mrs + nrs) = O(max(m, n)rs) = O(N) where 
N = max(m, n) and r,s << N.

This low computational cost multiplication of blocks by multiple right-hand sides generalizes 
into several blocks, as presented in panel (b). This is because the right-hand side vector can be 
partitioned into sub-blocks of the sizes corresponding to particular sub-blocks of the matrix. The 
multiplication can be performed then in the following way: C2(C1X1) + D2(D1X2) for the first block, 
and E2(E1X2) + F2(F1X2) for the second block. Each of the intermediate results, namely C2(C1X1), 
and D2(D1X1)X2), and E2(E1X2), and F2(F1X2) is computed in a linear computational cost, using the 
scheme from panel (a), and they are aggregated into the resulting vectors.

2.	 Four-dimensional	finite	element	method

The four-dimensional finite element method employs discretizations over the four-dimensional 
computational grids. It is employed for space-time formulations. Usually, the discretization over 
the first three dimensions concerns the spatial dimensions, x, y, and z, and the fourth dimension 
concerns the time variable. The space-time formulations are widely used nowadays in the finite 
element method community [4–7]. The idea of the space-time formulation is that it can be applied 
to time-dependent problems, where the dynamic of the system is more intense in one part of the 
computational domain than in the others. Thus, to follow the complexity of the dynamical changes 
of the modeled system, we can perform smaller time steps in one part of the domain and, at the same 
time, larger time steps in the other parts. This can be expressed by multi-dimensional grids, where 
we adapt the four-dimensional hexhedrals in spatial and temporal dimensions.

As the example, on panel (a) in Figure 2, we present the structure of the hierarchical matrix 
(after the rank 1 compression) of the four-dimensional mesh expressing the heat transfer problem 
on a uniform four-dimensional mesh. In this work, we focus on developing efficient solvers for 
space-time formulations. We employ the hierarchical format of the matrix discretized over the four-
-dimensional space-time grid. We show that this matrix can be employed to speed up the iterative 
GMRES solver algorithm.

Figure 2. Panel (a) Matrix of four-dimensional finite element method compressed  
with rank r = 1 into a hierarchical matrix. Panel (b) Ideal recursive decomposition of a matrix,  

where we refine towards the diagonal blocks, and all off-diagonal blocks have rank 1.
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3. Accelerating the GMRES algorithm

The Generalised Minimum RESidual (GMRES) iterative algrithm [3] is the generalization 
of the Minimal RESidual (MINRES) solver. Unlike MINRES, which only works for symmetric 
matrices, it can be applied for unsymmetric systems. The algorithm can be summarized as follows:

1) Compute r0 = b – Ax0,
2) Compute v1 = r0| / ||r0||,
3) Loop j = 1,2,…,k,

a) Compute hi,j = (Avj, vi) for i = 1,2,…,j,
b) Compute wj + 1 = Avj – Σi,…,j hi,j vi,
c) Compute hj + 1, j = ||wj + 1||2,
d) Compute vj + 1 = wj + 1 / hj + 1,j,

4) Form solution xk = x0 + Vkyk where Vk = [v1,…,xk] and yk minimizes J(y) = ||βe1 – Hk y|| where H 
is the matrix of hi,k.
In this algorithm, the matrix A is employed in line 1, where it is multiplied by the x0 vector, as 

well as in lines 3a and 3b, where it is multiplied by the vector vj. Now, with matrix A being sparse 
and having NNZ non-zero entries, the multiplication of a matrix by a vector can be performed with 
NNZ computational cost. We must multiply each non-zero entry of A by a non-zero entry of the 
vector. For space-time formulations, though, the NNZ can be large.

What is the cost of multiplication of the hierarchical matrix of size N by a vector? For the ideal 
case, presented in panel a in Figure 2, our matrix is partitioned recursively into the diagonal blocks, 
and the off-diagonal blocks have rank 1. The computational cost of the matrix-vector multiplica-
tion is the following. When we recursively partition the matrix into four blocks, the total cost is 
C(N) = 2C(N/2) + 2O(r2N/2) + O(N), where C(N) is the cost of multiplication for the entire matrix 
of size N, recursively partition into blocks into the diagonal, the C(N/2) is the cost of multiplication 
of the recursivly partitioned into the diagonal of two halves of the original matrix, and O(r2N/2) is 
the cost of multiplication of the off-diagonal blocks of size N/2 with rank r, by the vector. Additio-
nally, we count N additions related to the aggregations of the resulting vector. The solution to this 
recursive equation is C(N) = O(NlogN). Thus, in our method, we can perform the matrix-vector 
multiplications with quasi-linear computational cost.

4. Numerical experiments

To summarize the paper, we have generated the space-time matrix for the heat transfer problem 
over the computational mesh of size of 8 elements in each direction. In order to obtain a stable 
numerical solution, we employed the residual minimization method [8]. We have employed the 
isogeometric analysis for discretization, which can be understood as the finite element method 
with higher-order B-spline basis functions [9]. We have used quadratic B-splines in each direction 
for trial and quadratic B-splines with C0 separators for testing (equivalent to the Lagrange ba-
sis). For such the setup of the residual minimization method, the size of the matrix is ([trial space 
size] + [test space size])4 = ([8 + 2] + [8 + 7 + 2])4 = 274 = 531 441. Thus, we have a matrix of 
531 441 rows and columns. We have employed the GMRES solver for the original uncompressed 
matrix, and we compared it with the matrix generated in a rank one compressed format. We set up 
the solver accuracy to 0.000001.

1) For the original full matrix, the GMRES solver required ten iterations with 25 112 040 total 
number of floating-point operations (25 112 204 flops per iteration)

2) For the compressed hierarchical matrix, the GMRES solver requires seven iterations with 
2 307 760 total flops (329 680 flops per iteration).
Thus, we have shown that our method reduces the computational cost of the GMRES solver by 

one order of magnitude on the space-time formulations solved with isogeometric analysis methods.
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