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1. Introduction

The process of FEM calculations is split into two stages - the assembly of the discrete form and 
the resolution of algebraic equations. While there are various types of problems that require multiple 
integrations, modern solvers for IGA-FEM have greatly reduced the computation cost, such as by 
using the Alternating Direction Solver (ADS). In fact, with ADS, integration can make up as much as 
80% of the overall cost. Historically, integration was done by processing each element concurrently, 
but now, with the advent of multi-level parallel computational clusters [4], there are additional two 
levels of parallelism available for the integration.

Incorporating concurrency in the integration process at the element level is key to improving perfor-
mance. To achieve this, the use of Trace Theory [5] can be employed to derive the Foata Normal Form 
(FNF) and create a Diekert’s dependency. By utilizing FNF, the creation and implementation of parallel 
algorithm on a GPU becomes much more manageable and efficient. Additionally, FNF offers near-opti-
mal scheduling and GPU implementation, as well as theoretical validation of parallel algorithms. This 
methodology can be applied to a variety of integration algorithms to achieve improved results.

2. Model problem and IGA-discrete variational formulation

The goal of this study is to evaluate the cost of using different integration methods for assem-
bling IGA matrices. To illustrate this, we will use the heat equation discretized in time using the 
forward Euler method and focus specifically on the cost of assembling the Mass matrix.

Find u ! C1 ((0,T), H1 (Ω)) such that u = u0 at t = 0 and, for each t ! (0,T), it holds:

For simplicity, we consider a discrete-in-time version of problem by employing the forward 
Euler method.
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This study focuses on utilizing 3D-tensor B-spline basis functions with a uniform polynomial 
degree order and regularity at the interior faces of the mesh for ease of demonstration. However, it 
should be noted that the techniques presented can be easily adapted to other types of B-spline basis 
functions. For construction of B-spline basis functions we used Cox-de-Boor recursive formulae [6].

3. Algorithms and computational cost

We compared two algorithms, the classical integration algorithm, and the sum factorization 
algorithm. In the classical integration algorithm, local contributions to the left-hand-side matrix 
A are represented as a sum over quadrature points. In this case, the associated computational cost 
scales, concerning the polynomial degree p as O(p9) [2].

On the other side, Sum factorization algorithm is based on reorganizing the integration terms 
to reduce the computational cost, in terms of the polynomial degree p, associated with the sum 
procedure O(p7) [2].

In practice is written as:

where

and

We applied methodology described in [1] to sum factorization algorithm, to obtain optimal 
scheduling and theoretical verification from trace theory method [3]. Next we made a series of 
numerical experiments to measure parallel performance. In Tables 1 and 2 we presented numerical 
results for both considered algorithms. We have obtained both maximum experimental speedup, as 
well as theoretical maximum combined one. In the Tables, P denotes the percentage of the algori-
thm which benefits from the parallel speedup, ν is the number of threads, and S(ν) is the measured 
speedup when using ν threads.

We observed unexpected performance behaviour of the parallel sum factorization. Despite 
utilizing parallel loops across all elements, it was scaling only up to 4 cores. Beyond 4 cores, there 
was a plateau in speedup, indicating poor performance in multi-core environment.

Bi;0 pQ V:= 10 if ci # p 1 ci+1

otherwise
G (3)

Bi;q pQ V:= ci+q - ci
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The maximum speedup of the classical method, as shown in Table 1, mirrors findings from 
[1]. It is worth noting that sum factorization demands significantly more memory synchronization 
compared to the classical method.

Finally we evaluated the performance of classical integration and sum factorization in various 
scenarios by analysing the computational times from Tables 1 and 2. We focused on scenario of 
p = 9 as it was expected to be the optimal scenario for sum factorization. We examined three sce-
narios for a mesh size of 303:1) single-core CPU execution, 2) shared-memory CPU computation, 
and 3) GPU execution. The classical integration on a single core took 11 752.54 seconds, the 12-
core OpenMP implementation took 1125.72 seconds, and the estimated GPU implementation was 
expected to take 5.87 seconds. For sum factorization integration, the single-core execution took 
394.28 seconds, the 4-core OpenMP implementation took 112.65 seconds, and the estimated GPU 
implementation was expected to take 10.78 seconds.

4. Conclusions

Our approach validates the scheduling for integration algorithm by utilizing trace theory. We 
compared the integration algorithm’s execution on both a CPU and GPU. We can extrapolate its 
scalability for various elliptic problems. Furthermore, the trace-theory based analysis of concurren-
cy in the integration algorithm can be adapted to different integration methods. The methodology is 
versatile and can be expanded to include higher-dimensional spaces.

Table 1. Classical integration method. Bottom index i stands for “inside element”,  
e over all elements, and c combined.

p tbase νi Oi(ν) Pi Si(∞) νe Se(ν) Pe Se(∞) Sc(∞)
1 0.08 6 1.35 0.31 1.45 3 2.5 0.9 10.00 14.50
2 0.91 6 2.32 0.68 3.15 6 5.4 0.98 45.00 141.75
3 6.70 9 4.01 0.84 6.43 8 7.8 0.98 52.00 314.36
4 36.56 12 5.64 0.90 9.75 10 7.8 0.97 31.91 311.12
5 143.86 12 4.6 0.85 6.84 12 11.29 0.99 174.92 1 196.45
6 562.03 11 6.98 0.94 17.36 12 11.15 0.99 144.29 1 984.07
7 1 622.20 12 7.28 0.94 16.97 12 10.75 0.99 94.60 1 605.36
8 4 586.81 12 5.16 0.88 8.30 12 10.88 0.99 106.86 886.94
9 11 752.54 12 8.54 0.96 27.15 12 10.44 0.99 73.62 1 998.78

Table 2. Sum factorization. Bottom index i stands for “inside element”,  
e over all elements, and c combined.

p tbase νi Oi(ν) Pi Si(∞) νe Se(ν) Pe Se(∞) Sc(∞)
1 0.05 1 1 0 1 2 1.5 0.67 3 3.00
2 0.29 1 1 0 1 4 2.9 0.87 7.91 7.91
3 1.38 1 1 0 1 4 2.9 0.87 7.91 7.91
4 5.12 10 1.16 0.15 1.18 4 3.3 0.93 14.14 16.69
5 15.15 11 1.34 0.28 1.39 4 3.5 0.95 21 29.19
6 40.63 10 1.44 0.34 1.51 4 3.5 0.95 21 31.71
7 109.47 11 1.68 0.45 1.80 4 3.2 0.92 12 21.60
8 202.17 9 1.52 0.38 1.63 4 3.4 0.94 17 27.71
9 394.28 10 1.63 0.43 1.75 4 3.5 0.96 21 36.75
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