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1. Introduction

The linear welding process enables to manufacture parts for the construction, building and mi-
ning industries, where components such as brackets or anchors are used. These products are often 
responsible parts of constructions, making their quality a factor in human safety, and is therefore a 
key aspect of manufacturing. The speed of manufacturing in this process is high, and the fluctuation 
and variability of parameters is significant, making it imperative that maintaining quality at the 
manufacturing stage through parameter monitoring must also include predicting these parameters 
in advance to allow time for a possible response even before unacceptable deviations from accep-
table process parameter values occur. Key process parameters include current parameters (power, 
amperage, voltage) and their derivative – welding temperature. Based on these, it can be predic-
ted whether the resulting weld will have satisfactory strength [1–3]. Since the range of products 
produced at the plant is considerable, and the different dimensions and thickness of the pipe to be 
welded determine the setting of the right parameters for it, the models must receive the thickness 
and diameter of the given material at the input in order to correctly predict the power with which 
the process should be carried out to achieve the right welding temperature. 

2. Temperature prediction models

The research aimed to develop models using data mining and machine learning from produc-
tion data from the process to predict weld temperatures based on current parameters. A number of 
machine learning algorithms were used, which have already proven their effectiveness in mate-
rials engineering and metal processing applications [4–7]. Two different datasets were worked on. 
Among others, a model was developed based on results from a pyrometer placed on a measuring 
device. This was data from work-in-progress – cleared of downtime and changeovers, start-ups and 
process extinctions. Only data for work-in-progress production. Data: 12 575 records. Using the 
automatic network architecture search algorithm (Automatic Neural Networks), the space of possi-
ble architectures and different number of layers and neurons in hidden layers, as well as MLP and 
RBF architectures, different types of activation functions were searched, determining the optimal 
network architecture. Validation quality of correlation R = 0.945 was obtained, determination coef-
ficient was R2 = 0.893. The second dataset included results from real production (with downtime, 
startup and quench), data was sampled every half second and temperature delay was added to re-
present the actual weld heating delay. Data: 50 400 records. The developed model had a correlation 
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coefficient R = 0.992, determination coefficient R2 = 0.984. Even better results were obtained using 
Random Forest (Table 1).

3. Power prediction models

The key process parameter affecting the welding temperature and thus the most important 
quality factor turned out to be the power of the current. Tasking the right power for a given size and 
material of the welded profile is the most important task of the operator. Based on material testing, it 
is possible to determine in what power range welds of the expected strength are produced, and whe-
re is the limit below which the process does not maintain the expected quality. However, material 
tests are expensive, and they are destructive tests, so they require the destruction of the sample and 
thus the product. Having production data and temperature prediction models to determine whether 
the process temperature was appropriate, it was possible to perform process data filtering obtaining 
learning sets with given characteristics, allowing the development of models that, as an output, 
made it possible to determine what power was appropriate for the process carried out for particular 
profiles: material, diameter and thickness. A knowledge base was acquired, which in the next step 
was used to develop inference models using fuzzy logic.

4. Results

The developed model allows prediction of safe power levels for given input parameters: ma-
terial, diameter and wall thickness. The fuzzy logic model was implemented in the process control 
system. The Fuzzy Inference System (FIS) model derived from MATLAB is parsed into Fuzzy Lite 
Language (FLL) format, which enables the use of the fuzzylite library. Implementation of subse-
quent models involves using the base class FuzzyModel and implementing procedures, along the 
lines of PowerMaterialModel for subsequent aggregates. The model was tested on samples that had 
material test results and on real data from the welding process. A particularly important aspect was 
that the suggestions made by model should not indicate suggestions below the minimum acceptable 
power. An error in the opposite direction – excess power – is not so harmful. The results indicated 
a good fit of indications R2 = 0.73, MAE = 9 kW, the predicted power never exceeded the allowable 
minimum. Average over-delivery relative to the minimum: 17.3 kW (Table 2).

Table 1. Comparative analyses of temperature prediction results.

Model MSE RMSE MAE R2

Random Forest 613.4 24.76 16.98 0.986
Ada Boost 690.4 26.27 16.81 0.984
Regression Tree 895.9 29.93 19.76 0.979
Linear Regression 926.7 30.44 22.21 0.978
Neural Network 2214.6 47.06 28.31 0.984

Table 2. Comparative analyses of temperature prediction results.

Metric Abbreviation Value
Residual Sum of Squares RSS 145.24
Mean absolute error MAE 9.31
Relative mean square error RMSE 0.014
Relative Average Deviation d 0.09
Correlation coefficient r 0.86
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Figure 1. Inference surface in fuzzy logic (a). Prediction quality analysis – R2 = 0.73, MAE = 9kW, 
the predicted power never exceeded the allowable minimum (b).
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