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1. Introduction

The predictive capabilities of classical finite element models are commonly increased using 
a digital material representation (DMR) concept [1]. Depending on the approach, the whole proce-
dure can be time-consuming and thus drastically increase the computation time of subsequent model 
runs. The most straightforward approach for preparing DMRs is processing metallographic images 
acquired by light or electron microscopy. It is particularly effective for 2D studies because it allows 
even complex microstructures to be directly mapped to a numerical model based, for example, on 
finite elements, cellular automata, or Monte Carlo methods. Often, however, such models are in-
sufficient, and the inhomogeneities appearing in 3D space require more sophisticated experimental 
solutions to provide input data. Therefore, to speed up the process of generating DMR data, various 
algorithmic solutions have been proposed over the years [2–4]. A frequently used method, especially 
for 3D investigations, is simulating unconstrained grain growth using various cellular automata (CA) 
algorithms. However, the results’ quality can be drastically limited by the regularized nature of the 
cellular automaton space. A simple grain growth algorithm based on the random cellular automata 
(RCA) method can be used as a potential solution to provide high-quality DMR for further analysis 
[5]. However, the most time-consuming part of that approach, the neighbour-search algorithm, sho-
uld be optimized from an algorithmic point of view before practical application in full-field analysis. 
Minimizing computation time is crucial because simulations with large amounts of CA cells need to 
be done in reasonable simulation time. It involves much more effort during model implementation to 
optimise the algorithm in terms of execution time, which has to be at an acceptable time. The main 
goal of the current work is to evaluate the hardware counters to establish the capabilities of each 
implemented method. The presented research has shown that significantly reducing RCA simulation 
time with the adequately developed neighbour-search algorithm is possible. 

2. Methodology

The generation of a digital material representation model of single-phase Fe-30Ni alloy cha-
racterized by stable austenitic microstructure up to room temperature was selected as a case study 
(Figure 1). Mentioned RCA approach operates in a mesh-free environment within a dynamic cloud 
of CA cells. Similarly to the classical CA method, the evolution of CA cell states is directly related 
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to the definition of transition rules that have to be applied for each cell, knowing all its neighbors 
(Figure 1a). Therefore, four neighbor-search algorithms dedicated to the RCA method were bench-
marked within the work for the algorithm’s complexity and the impact of individual parameters on 
computational efficiency. The work presents a comparison of the Basic brute-force neighbours se-
arch algorithm performance with the developed, more advanced approaches. The first investigated 
solution is SortDimension algorithm [6] which reduces the number of cell comparisons by sorting 
CA cells according to the selected coordinate axis. The second is a quadtree-based approach (Quat-
Tree) [7] adapted to the needs of RCA, and finally, the third is FixedGrid algorithm in which cells 
are grouped into specific subregions.

3. Results

In order to calculate the average data transfer from RAM, the PAPI_L3_TCM hardware coun-
ter and sectional timing were used. The counter mentioned above indicates misses to the L3 cache, 
which is equivalent to DRAM access. To convert the raw number into bytes, it was multiplied by 
64, since, on modern processors, access to memory is done to the entire line, which is most often 64 
bytes. The number thus obtained was divided by the time of a given step.

The inspection of branch counters revealed that the smallest number of branch instructions cha-
racterized FixedGridGroup. This is expected as optimizations incorporated in the algorithms reduced 
the number of checks. The slowest algorithm has the highest number of conditional branches. Inte-
restingly, the number of accesses to DRAM (misses to L3 cache) was not different among the tested 
algorithms in the step() stage. In the case of prepare() stage, the situation is different. The memory on 
the benchmark machine was DDR4 RAM configured at 2133 MT/s with a bus width of 64bits (sin-
gle channel). That is around 16GiB/s of theoretical throughput. FixedGridGroup algorithm reached 
a throughput of 7 GiB/s which is only 44% of the theoretical maximal throughput. This stage is not 
composed only of memory accesses; some minor computations and conditional branches are perfor-
med along. This could mean that memory bandwidth is the bottleneck or the algorithm is nearing it.

4. Summary

Various approaches and optimization techniques give the possibility to identify the strong and 
weak sides of neighbor-searching algorithms. For the simple generation of digital microstructure 

Figure 1. a) general flow of the RCA algorithm, b) RCA simulation results  
in the form of material microstructure from different neighbor searching algorithms.
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representation using grain growth algorithm, where cell positions do not change, the method Fixed-
GridGroup is fastest, as step() stage was optimized at the cost of slowing down prepare() stage. In 
the family of FixedGrid algorithms, FixedSubgrid showed that mitigating performance penalties 
for large neighborhoods are possible, but no clear methodology to pick the parameter was found. 
Further analysis using hardware counters allowed us to gather more detailed information about im-
plemented algorithms and revealed potential bottlenecks. In the step() stage, speed was seemingly 
correlated with the number of conditional branches. In the case of prepare() stage, the memory 
bandwidth is the bottleneck.
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